Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytochemistry ; 222: 114101, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636687

RESUMEN

Bafilomycins are macrocyclic polyketides with intriguing structures and therapeutic value. Genomic analysis of Streptomyces sp. SCSIO 66814 revealed a type I polyketide synthase biosynthetic gene cluster (BGC), namely blm, which encoded bafilomycins and featured rich post-modification genes. The One strain many compounds (OSMAC) strategy led to the discovery of six compounds related to the blm BGC from the strain, including two previously undescribed 6,6-spiroketal polyketides, streptospirodienoic acids D (1) and E (2), and four known bafilomycins, bafilomycins P (3), Q (4), D (5), and G (6). The structures of 1 and 2 were determined by extensive spectroscopic analysis, quantum calculation, and biosynthetic analysis. Additionally, the absolute configurations of the 6/5/5 tricyclic ring moiety containing six consecutive chiral carbons in the putative structures of 3 and 4 were corrected through NOE analysis, DP4+ calculation, and single-crystal X-ray diffraction data. Bioinformatic analysis uncovered a plausible biosynthetic pathway for compounds 1-6, indicating that both streptospirodienoic acids and bafilomycins were derived from the same blm BGC. Additionally, sequence analysis revealed that the KR domains of module 2 from blm BGC was B1-type, further supporting the configurations of 1-4. Notably, compounds 3 and 4 displayed significant cytotoxic activities against A-549 human non-small cell lung cancer cells and HCT-116 human colon cancer cells.


Asunto(s)
Policétidos , Streptomyces , Streptomyces/química , Streptomyces/metabolismo , Streptomyces/genética , Policétidos/química , Policétidos/farmacología , Policétidos/aislamiento & purificación , Humanos , Estereoisomerismo , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Macrólidos/química , Macrólidos/farmacología , Macrólidos/aislamiento & purificación , Macrólidos/metabolismo , Proliferación Celular/efectos de los fármacos , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Compuestos de Espiro/aislamiento & purificación , Relación Estructura-Actividad , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/genética , Línea Celular Tumoral , Genoma Bacteriano , Familia de Multigenes
2.
Mar Drugs ; 22(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38667798

RESUMEN

Three pairs of enantiomers (1-3)-the new 12R-aloesol (1a) and two new fatty acids (2 and 3)-and one new natural product (4) together three known compounds (5-7) were isolated from a coral-reef-derived Streptomyces sp. SCSIO 66814. Their structures were determined through extensive spectroscopic analysis, chiral analysis, and single-crystal X-ray diffraction data. Compounds 2 and 3 were presumed to be intermediates for further generating homononactic acid (5) and nonactic acid, and the latter two molecules were able to act as precursors to form macrotetrolides with remarkable biological activity. The isolation of related precursors, compounds 2-5, provided more evidence to support the proposal of a plausible biosynthetic pathway for nonactic acid and its homologs. Additionally, (+)-1 exhibited a weak activity against DPPH radicals.


Asunto(s)
Antozoos , Cromonas , Streptomyces , Streptomyces/metabolismo , Streptomyces/química , Cromonas/química , Cromonas/aislamiento & purificación , Cromonas/farmacología , Estereoisomerismo , Antozoos/química , Animales , Cristalografía por Rayos X , Ácidos Grasos/química , Ácidos Grasos/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/aislamiento & purificación , Estructura Molecular
3.
Mar Drugs ; 22(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667794

RESUMEN

An ethyl acetate extract of a marine actinomycete strain, Nocardiopsis mentallicus SCSIO 53858, isolated from a deep-sea sediment sample in the South China Sea, exhibited anti-quorum-sensing (QS) activity against Chromobacterium violaceum CV026. Guided by the anti-QS activity, a novel active compound was isolated and purified from the extract and was identified as 2,3-dimethoxycinnamic acid (2,3-DCA) through spectral data analysis. At a concentration of 150 µg/mL, 2,3-DCA exhibited robust inhibitory effects on three QS-regulated traits of C. violaceum CV026: violacein production, swarming motility, and biofilm formation, with inhibition rates of 73.9%, 65.9%, and 37.8%, respectively. The quantitative reverse transcription polymerase chain reaction results indicated that 2,3-DCA can disrupt the QS system in C. violaceum CV026 by effectively suppressing the expression of QS-related genes, including cviR, vioA, vioB, and vioE. Molecular docking analysis revealed that 2,3-DCA hinders the QS system by competitively binding to the same binding pocket on the CviR receptor as the natural signal molecule N-hexanoyl-L-homoserine lactone. Collectively, these findings suggest that 2,3-DCA exhibits promising potential as an inhibitor of QS systems, providing a potential solution to the emerging problem of bacterial resistance.


Asunto(s)
Antibacterianos , Chromobacterium , Indoles , Simulación del Acoplamiento Molecular , Percepción de Quorum , Percepción de Quorum/efectos de los fármacos , Chromobacterium/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/aislamiento & purificación , Antibacterianos/química , Actinobacteria/química , Cinamatos/farmacología , Cinamatos/aislamiento & purificación , Cinamatos/química , Biopelículas/efectos de los fármacos , Sedimentos Geológicos/microbiología , Organismos Acuáticos , China
4.
Biosens Bioelectron ; 250: 116087, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295583

RESUMEN

Dopamine (DA), a catecholamine neurotransmitter, is crucial in brain signal transmission. Monitoring cytoplasmic DA levels can reflect changes in metabolic factors and provide valuable information for researching the mechanisms involved in neurodegenerative diseases. However, the in-situ detection of intracellular DA is constrained by its low contents in small-sized single cells. In this work, we report that noble metal (Au, Pt)-modified carbon fiber micro-nanoelectrodes are capable of real-time detection of DA in single cells with excellent sensitivity, selectivity, and anti-contamination capabilities. Notably, noble metals can be modified on the electrode surface through electrochemical deposition to enhance the conductivity of the electrode and the oxidation current of DA by 50 %. The nanosensors can work stably and continuously in rat adrenal pheochromocytoma cells (PC12) to monitor changes in DA levels upon K+ stimulation. The functionalized carbon fibers based nanosensors will provide excellent prospects for DA analysis in the brains of living animals.


Asunto(s)
Técnicas Biosensibles , Dopamina , Ratas , Animales , Dopamina/química , Fibra de Carbono/química , Técnicas Electroquímicas , Electrodos , Metales , Carbono/química
5.
Front Microbiol ; 14: 1297843, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098670

RESUMEN

Background: Quorum sensing is bacteria's ability to communicate and regulate their behavior based on population density. Anti-quorum sensing agents (anti-QSA) is promising strategy to treat resistant infections, as well as reduce selective pressure that leads to antibiotic resistance of clinically relevant pathogens. This study analyzes the output, hotspots, and trends of research in the field of anti-QSA against clinically relevant pathogens. Methods: The literature on anti-QSA from the Web of Science Core Collection database was retrieved and analyzed. Tools such as CiteSpace and Alluvial Generator were used to visualize and interpret the data. Results: From 1998 to 2023, the number of publications related to anti-QAS research increased rapidly, with a total of 1,743 articles and reviews published in 558 journals. The United States was the largest contributor and the most influential country, with an H-index of 88, higher than other countries. Williams was the most productive author, and Hoiby N was the most cited author. Frontiers in Microbiology was the most prolific and the most cited journal. Burst detection indicated that the main frontier disciplines shifted from MICROBIOLOGY, CLINICAL, MOLECULAR BIOLOGY, and other biomedicine-related fields to FOOD, MATERIALS, NATURAL PRODUCTS, and MULTIDISCIPLINARY. In the whole research history, the strongest burst keyword was cystic-fibrosis patients, and the strongest burst reference was Lee and Zhang (2015). In the latest period (burst until 2023), the strongest burst keyword was silver nanoparticle, and the strongest burst reference was Whiteley et al. (2017). The co-citation network revealed that the most important interest and research direction was anti-biofilm/anti-virulence drug development, and timeline analysis suggested that this direction is also the most active. The key concepts alluvial flow visualization revealed seven terms with the longest time span and lasting until now, namely Escherichia coli, virulence, Pseudomonas aeruginosa, virulence factor, bacterial biofilm, gene expression, quorum sensing. Comprehensive analysis shows that nanomaterials, marine natural products, and artificial intelligence (AI) may become hotspots in the future. Conclusion: This bibliometric study reveals the current status and trends of anti-QSA research and may assist researchers in identifying hot topics and exploring new research directions.

6.
Anal Chem ; 95(37): 14101-14110, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37674256

RESUMEN

Intracellular dynamic assembly of DNA structures may be beneficial for the development of multifunctional nanoplatforms for the regulation of cell behaviors, providing new strategies for disease diagnosis and intervention. Herein, we propose the dynamic assembly of DNA coacervates in living cells triggered by miRNA-21 and K+, which can be used for both miRNA imaging and mitochondrial intervention. The rationale is that miRNA-21 can trigger the hybridization chain reaction to generate G-quadruplex precursors, and K+ can mediate the assembly of G-quadruplex-based coacervates, allowing the colorimetric detection of miRNA-21 ranging from 10 pM to 10 µM. Moreover, the as-formed DNA coacervates can specifically target mitochondria in MCF-7 breast cancer cells using the MCF-7 cell membrane as delivery carriers, which further act as an anionic shielding to inhibit communication between mitochondria and environments, with a significant inhibitory effect on ATP production and cellular migration behaviors. This work provides an ideal multifunctional nanoplatform for rationally interfering with cellular metabolism and migration behaviors through the dynamic assembly of DNA coacervates mediated by endogenous molecules, which has a large number of potential applications in the biomedical field, especially theranostics for cancer metastasis.


Asunto(s)
ADN , MicroARNs , Replicación del ADN , Diagnóstico por Imagen , MicroARNs/genética , Mitocondrias
7.
Biomaterials ; 296: 122094, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933458

RESUMEN

Since the hypoxia tumor microenvironment (TME) will not only limit the treatment effect but also cause tumor recurrence and metastasis, intratumoral aggravated hypoxia level induced by vascular embolization is one of the major challenges in tumor therapy. The chemotherapeutic effect of hypoxia-activated prodrugs (HAPs) could be enhanced by the intensified hypoxia, the combination of tumor embolization and HAP-based chemotherapy exhibits a promising strategy for cancer therapy. Herein, an acidity-responsive nanoplatform (TACC NP) with multiple pathways to benefit the hypoxia-activated chemotherapy is constructed by loading the photosensitizer Chlorin e6 (Ce6), thrombin (Thr), and AQ4N within the calcium phosphate nanocarrier via a simple one-pot method. In the acidic TME, TACC NPs could be degraded to release Thr and Ce6, resulting in the destruction of tumor vessels and consumption of intratumoral oxygen under laser irradiation. Therefore, the intratumoral hypoxia level could be significantly aggravated, further leading to the enhanced chemotherapeutic effect of AQ4N. With the guidance of in vivo fluorescence imaging, the TACC NPs exhibited excellent tumor embolization/photodynamic/prodrug synergistic therapeutic effects with good biosafety.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Profármacos , Humanos , Fotoquimioterapia/métodos , Hipoxia Tumoral , Recurrencia Local de Neoplasia , Fármacos Fotosensibilizantes/farmacología , Profármacos/farmacología , Hipoxia , Línea Celular Tumoral , Microambiente Tumoral
8.
Acta Odontol Scand ; 81(5): 374-395, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36538375

RESUMEN

OBJECTIVE: Oral hygiene has been suspected to contribute to the aetiology of head and neck cancer (HNC). Based on the meta-analysis, we evaluated the impact of oral hygiene on head and neck cancer (HNC) and its survival. MATERIALS AND METHODS: Relevant case-control and cohort studies reporting survival data, oral hygiene data were searched via PubMed, Embase, Cochrane Library, and Web of Science databases. The odds ratios (ORs), hazard ratios (HRs), and 95% confidence intervals (CIs) were used. Subgroup analysis was performed. RESULTS: Oral hygiene was associated with HNC. Tooth brushing ≥2 a day, dental floss use, denture wearing, caries ≥3, and dental visit ≥1 reduced the risk of oral cavity cancer while mouth wash use, missing teeth >5, gum bleeding, and periodontal disease increased the risk of oral cavity cancer. For oropharynx cancer, tooth brushing ≥2 and caries ≥3 were associated with reduced risk of it. Tooth brushing ≥2 and dental visits ≥1 decreased the risk of pharynx cancer risk and larynx cancer risk, however, missing teeth >5 increased both of them. CONCLUSION: Oral hygiene was associated with HNC and its sub sites. Oral hygiene should be strengthened, a dental floss use and dentist's visits can be recommended.


Asunto(s)
Caries Dental , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Enfermedades Periodontales , Humanos , Higiene Bucal , Neoplasias de Cabeza y Cuello/etiología , Cepillado Dental , Neoplasias de la Boca/etiología
9.
Front Vet Sci ; 9: 986619, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532346

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can be transmitted from human to companion animals. The national wide serological surveillance against SARS-CoV-2 was conducted among pet animals, mainly in cats and dogs, 1 year after the first outbreak of COVID-19 in China. All sera were tested for SARS-CoV-2 IgG antibodies using an indirect enzyme linked immunosorbent assay (ELISA) based on the receptor binding domain (RBD) of spike protein. This late survey takes advantage of the short duration of the serological response in these animals to track recent episode of transmission. A total of 20,592 blood samples were obtained from 25 provinces across 7 geographical regions. The overall seroprevalence of SARS-CoV-2 infections in cats was 0.015% (2/13397; 95% confidence intervals (CI): 0.0, 0.1). The virus infections in cats were only detected in Central (Hubei, 0.375%) and Eastern China (Zhejiang, 0.087%) with a seroprevalence estimated at 0.090 and 0.020%, respectively. In dogs, the seroprevalence of SARS-CoV-2 infections was 0.014% (1/7159; 95% CI: 0.0, 0.1) in the entire nation, seropositive samples were limited to Beijing (0.070%) of Northern China with a prevalence of 0.054%. No seropositive cases were discovered in other geographic regions, nor in other companion animals analyzed in this study. These data reveal the circulation of SARS-CoV-2 in companion animals, although transmission of the virus to domestic cats and dogs is low in China, continuous monitoring is helpful for the better understand of the virus transmission status and the effect on animals.

10.
Microbiol Spectr ; 10(5): e0142922, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36154153

RESUMEN

Bluetongue (BT) is a severe noncontagious infectious disease that occurs in sheep and wild ruminants but occasionally also in cattle and camels. The worldwide BT pandemic has had a significant impact on global livestock production. Rapid detection helps prevent outbreaks of bluetongue disease. Fluorescence-linked immunosorbent assay (FLISA) labeled with quantum dots (QDs) is typically used for detection due to its high sensitivity. There has been no reported detection of BT virus (BTV) using QD-based fluorescence immunoassays. In this study, monoclonal antibodies (MAbs) against BT were prepared by immunizing BALB/c mice with recombinant VP7 protein. Two MAbs with high sensitivity and specificity were selected as the detection antibody (2F11) and capture antibody (11B7). Then, the detection antibody was coupled with QDs to prepare QD-MAb fluorescence probes. Fluorescence-linked immunosorbent assay is highly specific, detecting only VP7 protein/BTV, and did not show any nonspecific reactions with other reoviruses. The detection limit of VP7 protein was 3.91 ng/mL using fluorescence-linked immunosorbent assay, with a coefficient of variation (CV) of less than 15%. The establishment of rapid, sensitive direct FLISA has potential for bluetongue virus detection and control of BT vaccine quality. IMPORTANCE Bluetongue virus causes the severe infectious disease BT. BTV has many serotypes, and there is no cross-protection among different serotypes. BT is listed as a notifiable animal infectious disease by the World Organisation for Animal Health (OIE) and occurs throughout the world, causing significant economic losses. The establishment of a fast and effective detection method is the key to controlling and preventing this disease. Current methods for detecting BTV mainly include reverse transcription-PCR (RT-PCR), enzyme-linked immunosorbent assays (ELISA), and immunochromatographic strips that are based on antigen-antibody recognition. Immunoassays are most commonly used because of their low cost, high specificity, and fast analysis, making them particularly useful for routine monitoring. These conventional detection strategies for BTV have some drawbacks. Recently, FLISA has been drawing attention due to its sensitivity, which is higher than traditional immunoassays. Fluorescence-linked immunosorbent assays (FLISA) using fluorescent materials as labels overcome ELISA's disadvantage of being time-consuming.


Asunto(s)
Virus de la Lengua Azul , Lengua Azul , Bovinos , Ratones , Animales , Ovinos , Lengua Azul/diagnóstico , Inmunoadsorbentes , Anticuerpos Antivirales , Rumiantes , Anticuerpos Monoclonales
11.
Emerg Microbes Infect ; 11(1): 2120-2131, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35916768

RESUMEN

Spike (S) glycoprotein is the most significant structural protein of SARS-CoV-2 and a key target for neutralizing antibodies. In light of the on-going SARS-CoV-2 pandemic, identification and screening of epitopes of spike glycoproteins will provide vital progress in the development of sensitive and specific diagnostic tools. In the present study, NTD, RBD, and S2 genes were inserted into the pcDNA3.1(+) vector and designed with N-terminal 6× His-tag for fusion expression in HEK293F cells by transient transfection. Six monoclonal antibodies (4G, 9E, 4B, 7D, 8F, and 3D) were prepared using the expressed proteins by cell fusion technique. The characterization of mAbs was performed by indirect -ELISA, western blot, and IFA. We designed 49 overlapping synthesized peptides that cover the extracellular region of S protein in which 6 amino acid residues were offset between adjacent (S1-S49). Peptides S12, S19, and S49 were identified as the immunodominant epitope regions by the mAbs. These regions were further truncated and the peptides S12.2 286TDAVDCALDPLS297, S19.2 464FERDISTEIYQA475, and S49.4 1202ELGKYEQYIKWP1213 were identified as B- cell linear epitopes for the first time. Alanine scans showed that the D467, I468, E471, Q474, and A475 of the epitope S19.2 and K1205, Q1208, and Y1209 of the epitope S49.4 were the core sites involved in the mAbs binding. The multiple sequence alignment analysis showed that these three epitopes were highly conserved among the variants of concern (VOCs) and variants of interest (VOIs). Taken together, the findings provide a potential material for rapid diagnosis methods of COVID-19.


Asunto(s)
Epítopos de Linfocito B , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Secuencia de Aminoácidos , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Epítopos de Linfocito B/genética , Humanos , Glicoproteínas de Membrana/genética , Péptidos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas del Envoltorio Viral
12.
Membranes (Basel) ; 12(6)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35736299

RESUMEN

Polyimide membranes have excellent physiochemical properties which make them valuable materials for optical area. However, common aromatic polyimide membrane trend to show low transmittance in visible region because of the charge-transfer complex (CTC) in molecular structures. Moreover, it's trending to show high moisture uptakes because of the hydrophilic imide rings in molecular structure. In this work, a polyimide composite membrane with SiO2 antireflective membrane on both sides was prepared. High transmittance (93% within 500~800 nm) and surface hydrophobicity was realized simultaneously. The polyimide composite membrane showed great optical homogeneity. The SiO2 antireflective membranes on polyimide substrate were prepared through a simple and efficient sol-gel method. The surface roughness of polyimide membrane substrate on each side has been improved to 1.56 nm and 3.14 nm, respectively. Moreover, the excellent thermal stability and mechanical property of polyimide membrane has been preserved, which greatly improves the range of applications for the composite membrane. It is a good candidate for light weight optical system.

13.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(6): 553-558, 2022 Jun.
Artículo en Chino | MEDLINE | ID: mdl-35732612

RESUMEN

Objective The major capsid protein L1 of human papillomavirus type 58 (HPV58 L1) was obtained and identified by prokaryotic expression. Methods The recombinant expression strain pE-SUMO-58 L1 (BL21) was induced by IPTG. The recombinant protein SUMO-58 L1 was expressed in E.coli and identified by SDS-PAGE and Western blot analysis. Then the recombinant protein SUMO-58 L1 was purified by Ni-column and the SUMO-tag was removed by ubiquitin-like protease 1 (ULP1) digestion. Subsequently, the bioactivity of recombinant protein HPV58 L1 was verified by hemagglutination assay (HA). BALB/c mice were immunized with HPV58 L1, and the antibody titers in sera of the immunized mice were detected by ELISA. And then the reaction between the immune serum and the HPV58 L1 protein transiently expressed by HEK293T cells was detected by indirect immunofluorescence assay (IFA). Results The soluble expression of the recombinant protein SUMO-58 L1 was identified by SDS-PAGE and Western blot analysis, with yields of soluble protein SUMO-58 L1 being about 50% of total soluble bacterial proteins. The relative molecular mass (Mr) of SUMO-58 L1 was about 72 000. After Ni-NTA affinity was purified and the SUMO-tag was removed by ULP1 digestion, Mr of recombinant protein HPV58 L1 reached about 58 000. The recombinant protein HPV58 L1 showed hemagglutination activity similar to that of natural HPV, with hemagglutination value of 1:16. After immunizing BALB/c mice, the titer of immune serum observed was about 1:10 240 by ELISA; and the sera of the immunized mice reacted specifically with HPV58 L1 proteins which were transiently expressed in HEK293T cells by IFA. Conclusion The recombinant protein HPV58 L1 also has hemagglutination activity, which can be successfully obtained from E. coli. The sera of the HPV58 L1 protein immunized mice can be used for immunocytochemical detection of HPV58 L1 protein expressed in eukaryotic cells.


Asunto(s)
Alphapapillomavirus , Infecciones por Papillomavirus , Animales , Proteínas de la Cápside/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Humanos , Sueros Inmunes , Ratones , Ratones Endogámicos BALB C , Papillomaviridae , Proteínas Recombinantes de Fusión , Proteínas Recombinantes
14.
Small ; 17(52): e2105033, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34729905

RESUMEN

The specific coagulation in the tumor vasculature has the potential for the ablation of solid tumors by cutting off the blood supply. However, the safe delivery of effective vessel occluding agents in the tumor-specific embolization therapy remains challenging. Herein, it is reported that the photothermal responsive tumor-specific embolization therapy based on thrombin (Thr) is delivered by intravenous injection via the phase-change materials (PCM)-based nanoparticles. The wax sealing profile of PCM enables safe delivery and prevents the preleakage of Thr in the blood circulation. While in the tumor site, the thermal effect induced by IR780 triggers the melting of PCM and rapidly releases Thr to generate coagulation in the tumor blood vessels. Based on the safe delivery and controllable release of Thr, thermal responsive tumor-specific embolization therapy could be achieved with high efficiency and no significant damage to normal organs and tissues. The safe administration of Thr to induce vascular infarction in tumors based on PCM nanoparticles in this work shows a promising strategy for improving the therapeutic specificity and efficacy of coagulation-based tumor therapy.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Animales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Ratones , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Fototerapia , Trombina
15.
Polymers (Basel) ; 13(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805213

RESUMEN

Polyimide diffractive membrane lens can be used in space optical telescope to reduce the size and mass of an imaging system. However, traditional commercial aromatic polyimide membrane is hard to meet the challenging requirements of dimensional stability and optical homogeneity for optical use. Based on molecular structure design and the optimization of fabrication process, the prepared copolyamide-imide membrane achieved the desired performance of membrane as an optical material. It showed a very low coefficient of thermal expansion (CTE), which is 0.95 ppm/°C over a temperature range of -150-100 °C and relatively low coefficient of moisture expansion (CME), which is only 13.30 ppm/% RH (0~90% RH). For the optical use, the prepared copolyamide-imide membrane (φ200 mm) achieved good thickness uniformity with wave-front error smaller than λ/30 (λ = 632 nm) in RMS (root mean square). Besides, it simultaneously meets the optical, thermal, and mechanical requirements for space telescope use. Copolyamide-imide membranes in this research with good comprehensive performance can be used as large aperture membrane optical system architectures.

16.
PeerJ ; 9: e10543, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33505791

RESUMEN

BACKGROUND: The VP2 on the surface of the virus particle is the main structural protein of BTV, which can induce the host to produce neutralizing antibodies and play an important role in the antiviral immunity process. This study aimed to obtain the soluble VP2 and analyze its immunogenicity. METHODS: The gene encoding the full-length VP2 of BTV1 was amplified by PCR. The products from restriction enzyme digestion and ligase reaction between VP2 and vector pET-28a were transformed into E.coli DH5α. After PCR and sequencing detection, the positive plasmid PET28a-VP2 was transformed into E.coli BL21(DE3) and Rosetta(DE3) competent cells, expression induced by IPTG. The fusion protein was expressed in the optimized conditions with the induction of IPTG, purified by affinity chromatography and identified by SDS-PAGE and Western blotting. A total of 5 Balb/c mice aged 6-8 weeks were immunized with the fusion protein at a dose of 30 µg per mouse. Each mouse was immunized three times at an interval of 3 weeks. RESULTS: The recombinant plasmid PET28a-VP2 was successfully constructed. The expression strains were induced by 0.4 mmol/L IPTG at 16 °C for 10 h, and BTV1 VP2 was expressed in a soluble form. The purity of the recombinant VP2 protein (∼109 kDa) was about 90% in the concentration at 0.2 mg/ml afterpurification. The purified VP2 had good immunoreactivity with BTV1 positive serum. Taken together, thisstudy offered a route for producing soluble BTV VP2, which retains activity and immunogenicity, to bebeneficial to the research on developing BTV vaccine, and lay the foundation for further research on BTV.

17.
RSC Adv ; 11(28): 17346-17351, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35479672

RESUMEN

Two dimeric Ln-Cr clusters with formula {Ln(H2O)8[Ln6Cr3(L)6(CH3COO)6(µ3-OH)12(H2O)12]}·(ClO4)6·xH2O (Ln = Gd, x = 35 for 1 and Ln = Dy, x = 45 for 2, HL = 2-pyrazinecarboxylic acid) were obtained by a ligand-controlled hydrolytic method with a mixed ligand system (2-pyrazinecarboxylic acid and acetate). Single crystal structure analysis showed that two trigonal bipyramids of [Gd3Cr2(µ3-OH)6]9+ worked as building blocks in constructing the metal-oxo cluster core of [Gd6Cr3(µ3-OH)12]15+ by sharing a common top - a Cr3+ ion. Additionally, compound 1 forms a three-dimensional framework with a one-dimensional nanopore channel along the a-axis through a hydrogen-bond interaction between the cationic cluster core and the free mononuclear cation [Gd(H2O)8]3+ and the π-bond interactions of the pyrazine groups on the two cationic cluster cores. Magnetic calculations indicated a weak ferromagnetic coupling interaction for Gd⋯Gd and Gd⋯Cr in compound 1, with its magnetic entropy change (-ΔS m) reaching 21.1 J kg-1 K-1 at 5 K, 7 T, while compound 2 displayed an obvious frequency-dependency at H dc = 2000 Oe.

18.
Nanomaterials (Basel) ; 10(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352840

RESUMEN

Direct laser writing (DLW) is a convenient approach for fabricating graphene-based flexible electronic devices. In this paper, laser-induced graphene was successfully prepared on a thin and transparent polyimide film through the DLW process. Experiments have demonstrated that interdigital thin film capacitor prepared by the DLW method has a high specific capacitance of 8.11 mF/cm2 and volume capacitance density of 3.16 F/cm3 (0.05 mA/cm2) due to the doped fluoride in the laser-induced graphene. The capacitance is about 20 times larger than the super-capacitor based non-transparent polyimide film of the same thickness. Owing to its thin, flexible, higher electrochemical characteristics, the transparent polyimide film is promising for integrating and powering portable and wearable electronics.

19.
Biomater Sci ; 8(21): 6093-6099, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33001068

RESUMEN

Subcutaneous abscesses caused by drug-resistant pathogens pose a serious challenge to human health. To overcome this problem, herein an acidity-responsive aggregated W/Mo-based polyoxometalate (POM) was developed for photothermal-enhanced chemodynamic antibacterial therapy in the second near-infrared (NIR) region. The POM can self-assemble into larger-sized aggregates with stronger absorption in the NIR region, making it remain in the acidic infected tissue. Furthermore, the hydrogen peroxide at the site of infection can be converted to a hydroxyl radical for chemodynamic therapy (CDT) and simultaneously the glutathione in organisms is consumed by the POM to further enhance the CDT effect. More importantly, under laser irradiation, the hyperthermia produced by the POM not only can kill drug-resistant Staphylococcus aureus, but also enhance the performance of CDT. Benefitting from the inflammatory retention and acidity-responsive photothermal-enhanced CDT properties, the POM exhibits an obvious therapeutic effect against drug-resistant bacterial infection without significant side effects under 1060 nm laser irradiation.


Asunto(s)
Hipertermia Inducida , Staphylococcus aureus Resistente a Meticilina , Antibacterianos , Humanos , Fototerapia , Compuestos de Tungsteno
20.
Small ; 16(24): e2000436, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32406205

RESUMEN

The emergence of multidrug resistant bacteria has resulted in plenty of stubborn nosocomial infections and severely threatens human health. Developing novel bactericide and therapeutic strategy is urgently needed. Herein, mesoporous silica supported silver-bismuth nanoparticles (Ag-Bi@SiO2 NPs) are constructed for synergistic antibacterial therapy. In vitro experiments indicate that the hyperthermia originating from Bi NPs can disrupt cell integrity and accelerate the Ag ions release, further exhibiting an excellent antibacterial performance toward methicillin-resistant Staphylococcus aureus (MRSA). Besides, under laser irradiation, Ag-Bi@SiO2 NPs at 100 µg mL-1 can effectively obliterate mature MRSA biofilm and cause a 69.5% decrease in the biomass, showing a better therapeutic effect than Bi@SiO2 NPs with laser (26.8%) or Ag-Bi@SiO2 NPs without laser treatment (30.8%) groups. More importantly, in vivo results confirm that ≈95.4% of bacteria in abscess are killed and the abscess ablation is accelerated using the Ag-Bi@SiO2 NPs antibacterial platform. Therefore, Ag-Bi@SiO2 NPs with photothermal-enhanced antibacterial activity are a potential nano-antibacterial agent for the treatment of skin infections.


Asunto(s)
Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Antibacterianos/farmacología , Bismuto , Humanos , Dióxido de Silicio , Plata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...